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Abstract. We present Monte Carlo simulations of site percolation on cubic lattices with size
L. The cut-off function of the size distribution at the characteristic size s∗ can be described by
a Gaussian for site occupations (p) lower than the critical value for percolation (pc) while for
p > pc it is better described by a stretched exponential. Finite lattice size effects depend on
both ε = (pc − p)/pc and L and cannot be eliminated by normalization with the distribution at
ε = 0. We give a general expression of the cut-off function valid for any ε sufficiently small and
L sufficiently large. Using this general expression, we calculate the finite lattice size effects on
the weight average (sw) and z-average (sz) sizes which are in good agreement with values directly
obtained from the simulations.

1. Introduction

Two decades ago it was suggested [1] that gelation caused by random aggregation of molecules,
polymers or colloids can be described as a percolation process close to the gel point. Percolation
in three dimensions cannot be resolved analytically and has therefore been investigated using
Monte Carlo simulations; see [2] for a review. It was found that large percolating clusters have
a fractal structure so that

s ∝ RD s � 1 (1)

where s is the number of sites of the cluster with characteristic radius R, and D is the so-called
fractal dimension. The number of clusters per site with size s has a power law dependence
on s:

N(s) = fint(s) s
−τ fext(s/s

∗) (2)

where fint(s) is the internal cut-off function which is constant for s � 1 and fext(s/s
∗) is the

external cut-off function at a characteristic size s∗ which is unity for s � s∗ and decreases
faster than a power law for s � s∗. fext is also called the scaling function and fint the correction
to scaling. s∗ diverges at the percolation threshold as

s∗ ∝ |ε|−1/σ ε → 0 (3)

with ε = (pc − p)/pc, where p is the probability that a site is occupied and pc is the critical
value at the percolation threshold. pc depends on the details of the lattice used in the simulation
(pc = 0.3116 for site percolation on a simple cubic lattice). On the other hand, the exponents
D, τ and σ are expected to depend only on the spatial dimension, and not on the details
of the lattice. Precise values have recently been established in three dimensions [3, 4, 5, 6]:
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D = 2.53, τ = 2.19 and σ = 0.45. The functional form of N(s) does not depend on ε except
that fext is different for ε > 0 and ε < 0.

Subsequent experimental work showed that many characteristics of real gelling systems
were consistent with computer simulations of the percolation model. But both the computer
simulations and the experiments were mainly focused on scaling laws ignoring the problem
of the limits to the scaling behaviour. However, as we have shown elsewhere [7], ignoring
the influence of the cut-off functions can lead to significant errors in the determination of the
exponents. The only way to avoid this error is to consider the cut-off functions explicitly,
which in addition gives a more complete description of the experimental results.

Recently [8], we reported Monte Carlo simulations of site percolation in three dimensions
and gave a more accurate expression for fext at p < pc than was available at the time. We
compared the simulation results with the experimentally observed molar mass distributions of
gelling systems reported in the literature. In that work we avoided finite lattice size effects
by extrapolation to lattice size L → ∞. Here we want to address the influence of finite size
effects. We will use the results to calculate the finite size effect on the weight averaged (sw)
and z-averaged (sz) sizes of the percolating clusters, which are the reduced second and third
moment of the distribution:

sw = 1

p

∞∫
1

s2 N(s) ds (4)

sz =

∞∫
1
s3 N(s) ds

∞∫
1
s2 N(s) ds

∝ s∗. (5)

We will also give an expression for fext and fint valid for any ε sufficiently small and L

sufficiently large.

2. Results

We have performed Monte Carlo simulations of site percolation on simple cubic lattices with
free boundary conditions and using the so-called Hoshen and Kopleman algorithm [9]. The
results were averaged over a large number of trials in order to reduce the standard error to less
than 1% (more than 10 000 trials are needed for ε = 0 while 500 are sufficient for |ε| = 0.1).

Figure 1 shows the size distributions at different L for a given value of ε. For a given value
of s, N(s, ε, L) has a linear dependence on L−1 at large L as was found earlier for percolation
in two dimensions [10]. The range of linearity decreases with increasing s which renders the
use of large lattices necessary at large s. Using lattices with L up to 1023, the smallest ε for
which N(s) can be determined accurately over the whole range of s is about 6 × 10−3. The
values extrapolated to L → ∞ are indicated in figure 1 by a dashed line.

Figure 2 shows the size distributions at different ε before and after the gel point obtained
after extrapolation to L → ∞. The dashed line in figure 2 indicates the limiting power law
behaviour: N(s) = k1 s

−τ with k1 = 0.069 and τ = 2.19. The deviation at small s is caused
by the internal cut-off. It has been postulated [11] that the internal cut-off function has the
following form:

fint(s) = k1 (1 + k2 s
−�). (6)

In figure 3 we have plotted k1 − sτN(s, 0,∞) as a function of s at ε = 0 for L → ∞.
We have added for s � 12 exact values obtained from enumeration of lattice animals [12, 13],
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Figure 1. s2 N(s, ε, L) as a function of s at ε = 8.66 × 10−2 and L = 84, 124, 174, 276, 511 and
1023. The dashed line is the extrapolation at L → ∞.
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Figure 2. s2 N(s, ε,∞) as a function of s at various ε: before the gel point (5.78 × 10−3 � |ε| �
1.00 × 10−1), after the gel point (1.32 × 10−2 � |ε| � 1.00 × 10−1) and at the gel point (ε = 0).
From the top to the bottom the solid lines correspond to p = 0.2804, 0.2908, 0.2976, 0.3024,
0.3054, 0.3075, 0.3089, 0.3098, 0.3116, 0.3157, 0.3178, 0.3208, 0.3256, 0.3324 and 0.3428. The
dashed line represents the asymptotic power law behaviour at p = pc.
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Figure 3. k1 − sτN(s, 0,∞) as a function of s at the gel point, using τ = 2.19 and various k1:
0.0690 (circles,) 0.0688 (squares) and 0.0692 (triangles). The dots represent exact results from
enumeration of lattice animals. The solid line represents a linear least squares fit to the data for
10 � s � 100.

which are in excellent agreement with our simulation results. In this representation equation
(6) predicts a linear dependence on s with intercept k1k2 and slope −�. We have fixed τ at
the accurate literature value and varied k1. The best linear dependence was obtained using
k1 = 0.0690 with a visually estimated error of ±0.0002. A linear least squares fit to the data for
10 � s � 100 gives � = 0.65 ± 0.02 and k2 = −1.13 ± 0.02, where the errors represent the
95% confident interval. Recently, Lorenz and Ziff [6] have found � = 0.64 ± 0.02 at p = pc

from Monte Carlo simulations of bond percolation on different cubic lattices. Note, however,
that the internal cut-off function obtained from simulations is not relevant for comparison with
real systems because the internal cut-off function is system dependent.

On the other hand, knowledge of the external cut-off function at finite ε is very important
for any application of the percolation model to real systems. The external cut-off has been
investigated by Hoshen et al [11] and more recently by Stauffer [14]. In these simulations
a normalized external cut-off function was calculated in terms of the parameter X = ε sσ at
different values of ε as

fext(X, ε, L) = N(s, ε, L)

N(s, 0, L)
. (7)

We have made explicit in equation (7) the dependence on the lattice sizeL and ε in order to stress
that finite size effects on fext need to be considered even if fext is calculated by normalization
with the size distributon at ε = 0 and the same lattice size. It was assumed in [11, 14] that
using equation (7) finite size effects on the external cut-off function are simply divided out and
are no longer important. The authors concluded that fext(X, ε, L) was a function only of X
and could be described by a Gaussian with the maximum situated at X > 0. They also found
that within the statistical error fext does not depend on the detail of the lattice.

Figure 4 shows N(s, ε,∞)/N(s, 0,∞) as a function of X = ε sσ for different values
of ε, both for p smaller and larger than pc. We used the literature value σ = 0.45, which
resulted in good superposition of the data at different ε. In figure 4 all the data superimpose
even for small s, which implies that the internal cut-off function does not depend on ε. The
solid line in figure 4(a) shows that the data can be approximated by a Gaussian. However,
a semi-logarithmic representation shows that for p > pc the data are better described by a
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Figure 4. Linear (a) and semi-logarithmic (b) representations of the cut-off function of the
normalized size distribution as a function of X = ε sσ . The data are the same as shown in figure
2 with |ε| � 4.5 × 10−2. The solid lines represent equation (8) and the dashed line represents
equation (9).

stretched exponential, see the dashed line in figure 4(b). Nonlinear least squares fits give

fext(X) = 1.589 ± 0.004 exp

[
−1

2

(
X − 0.641 ± 0.002

0.666 ± 0.002

)2
]

X > 0 (8)

fext(X) = exp
(−2.3 ± 0.1 |X|1.5±0.1

)
X < 0. (9)

The errors represent again the 95% confident interval. Note that the prefactor of equation (8) is
not a fit parameter, but was chosen such that fext(0) = 1. Kunz and Souillard [15, 16] derived
the limiting behaviour of N(s) for |X| � 1: logN(s) ∝ Xζ with ζ = 1/σ = 2.22 for X > 0
and ζ = 2/(3 σ) = 1.48 for X < 0, where we use again σ = 0.45. It is difficult to obtain data
at |X| > 1 with high accuracy, but the results shown in figure 4 are, at least, compatible with
these predictions.

In figure 5(a) we have plotted the size distributions at ε = 0 for different values of L. The
distribution extrapolated to L → ∞ is represented by the dashed line. For ε = 0 the cut-off
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Figure 5. (a) Evolution of s2 N(s, 0, L) as a function of s at various L: 102, 124, 150, 174, 222,
276, 342, 511 and 1023. The dashed line represents the extrapolation at L = ∞. (b) Normalized
size distribution at the percolation threshold using the data shown in figure 5(a). The solid line
represents a smooth interpolation of the data.

function is fully determined by the finite extent of the lattice at a characteristic size proportional
to L1/D . In figure 5(b) we have plotted N(s, 0, L)/N(s, 0,∞) as a function of sσ L−1/ν for
different values of L, where ν = σ D = 0.88. We did not find a simple analytical function to
describe the cut-off function at ε = 0 and in the following we use for N(s, 0, L)/N(s, 0,∞)

the solid line in figure 5(b) which represents a smooth interpolation of the data uninfluenced
by the internal cut-off.

Having established the cut-off functions of the size distribution at L → ∞ for finite values
of ε and at ε = 0 for finite values of L, we are in a position to evaluate the cut-off functions
at finite values of L and ε �= 0. We limit ourselves to the case p < pc (ε > 0). In figure 6
we show fext(X, ε, L) for different values of ε and L considering only large values of L and
small values of ε. Clearly fext(X, ε, L) is not independent of ε and L. The neglect of this
dependence explains the large noise in the data presented in [11, 14] where results obtained
at different ε and L were assumed to describe a unique function. In fact fext(X, ε, L) is a
function of the parameter Y = ε L1/ν . Since the radius (R∗) of the cluster with size s∗ varies
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Figure 6. External cut-off function of the size distribution for different couples (ε, L) corresponding
to three different values of Y = ε L1/ν as indicated in the figure. For comparison, we also show
the result for Y = ∞ (equation (8)).

as R∗ ∝ ε−ν it follows that Y ∝ (L/R∗)1/ν . The cut-off function, fext(X, Y ), is well described
by a Gaussian, but with parameters that are a function of Y . For X � 0 and Y � 0 we have

fext(X, Y ) = A(Y ) exp

[
−1

2

(
X − X0(Y )

B(Y )

)2
]

(10)

with

A(Y ) = exp

[
1

2

(
X0(Y )

B(Y )

)2
]
. (11)

The dependence of the parameters X0 and B on Y is shown in figure 7 and is in both cases
well described by the following analytical functions:

X0(Y ) = 0.641(
1 + (a/Y )b

)c (12)

B(Y ) = 0.666

(1 + (d/Y )e)f
. (13)

A nonlinear least squares fit gave for the parameter X0: a = 4.0 ± 0.6, b = 0.95 ± 0.02
and c = 1.1 ± 0.1. While for the parameter B we obtained d = 1.4 ± 0.2, e = 1.05 ± 0.02
and f = 0.9 ± 0.1. Note that for L → ∞ we recover equation (8).

We can write the full expression for the size distribution as a universal function of the
parameters X and Y by combining the equations (2), (6), (7) and (10):

N(s, ε, L) = k1 s
−τ (1 + k2 s

−�) fext(X, Y ) g(X/Y ). (14)
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Figure 7. Dependence of the parameters in equation (10) on Y . The solid lines correspond to the
fits using equation (12) and (13).

Here g(X/Y ) is the external cut-off function at ε = 0 indicated by the solid line in figure
5(b) noting that X/Y = sσ L−1/ν . This expression is valid for any L sufficiently large and ε

sufficiently small.
In the simulations we have calculated the weight average (sw) and z-average (sz) sizes.

In the limit of L → ∞ and for ε sufficiently small, sz and sw have a power law dependence
on ε: sz ∝ |ε|−1/σ and sw ∝ |ε|−γ with γ = (3 − τ)/σ = 1.80. In figures 8 and 9 we
have plotted sz ε

1/σ and sw εγ as a function of Y using results at 0 < ε � 4.5 × 10−2 and
L � 150. Good superposition of the data at different ε is obtained if we chose the literature
values of σ , γ and ν. As expected finite size effects on sz and sw are a universal function of
Y = ε L1/ν . For Y → ∞, sz ε1/σ and sw εγ become constant while for Y → 0 we find that
sz ε

1/σ ∝ Y 1/σ and sw εγ ∝ Y γ . We can calculate the finite size effects on sz and sw explicitly
using equation (11) in equations (4) and (5), see solid lines in figures 8 and 9. The agreement
between the simulated and calculated values is satisfactory and shows that equation (14) is
a good description of the size distribution over the whole range of ε L1/ν , provided that ε is
sufficiently small (0 < ε � 4.5 × 10−2) and L is sufficiently large (L � 150).

3. Conclusions

• Finite lattice size effects on the size distribution of percolating clusters on cubic lattices
are a universal function of ε L1/ν .

• For s � 10 the internal cut-off function can be described by

fint(s) = 0.0690 (1 − 1.13 s−0.65) (15)

for ε sufficiently small.
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Figure 8. Semi-logarithmic (a) and double-logarithmic (b) representations of the finite size effects
on sw using γ = 1.80. The solid lines were obtained using equations (4) and (14). The dashed
line represents the asymptotic behaviour at Y → 0. The error bars represent confidence intervals
of 95%.

• The external cut-off function of N(s) at ε > 0 cannot be obtained by normalizing N(s)

with the size distribution at ε = 0. External cut-off functions of the normalized size
distributions do have a Gaussian form, but with parameters that depend on ε L1/ν . Only
by extrapolation to ε L1/ν → ∞ can the true external cut-off function of N(s) be obtained.

• Finite size effects of the weight averaged and z-averaged size of the clusters can
be calculated explicitly using the external cut-off functions of the normalized size
distributions.

• The external cut-off function of N(s) at p > pc is better described by a stretched
exponential than a Gaussian function.
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Figure 9. Semi-logarithmic (a) and double-logarithmic (b) representations of the finite size effects
on sz using σ = 0.45. The solid lines were obtained using equations (5) and (14). The dashed line
represents the asymptotic behaviour at Y → 0. The error bars represent confidence intervals of
95%.
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